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We investigate a lattice-fluid model defined on a two-dimensional triangular lattice, with the aim of repro-
ducing qualitatively some anomalous properties of water. Model molecules are of the “Mercedes Benz” type,
i.e., they possess aD3 (equilateral triangle) symmetry, with three bonding arms. Bond formation depends both
on orientation and local density. We work out phase diagrams, response functions, and stability limits for the
liquid phase, making use of a generalized first order approximation on a triangle cluster, whose accuracy is
verified, in some cases, by Monte Carlo simulations. The phase diagram displays one ordered(solid) phase
which is less dense than the liquid one. At fixed pressure the liquid phase response functions show the typical
anomalous behavior observed in liquid water, while, in the supercooled region, a reentrant spinodal is
observed.
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I. INTRODUCTION

Water is an anomalous fluid with respect to several ther-
modynamic properties[1–3]. At ordinary pressures the solid
phase(ice) is less dense than the corresponding liquid, the
liquid phase has a temperature of maximum density, while
both isothermal compressibility and isobaric heat capacity
display a minimum as a function of temperature. Moreover,
the heat capacity is unusually large. There is general agree-
ment, among physicists, that an explanation of such anoma-
lous properties is to be found in the peculiar features of hy-
drogen bonds, and the ability of water molecules to form
such kind of bonds[4,5]. It is also widely believed that the
same physics should be responsible for the unusual proper-
ties of water as a solvent for apolar compounds[6,7], that is
of the hydrophobic effect, of high importance in biophysics
[8]. Nevertheless, a comprehensive theory which explains all
of these phenomena has not been developed yet. A lot of
work has been done in “realistic” simulations[9–12], based
on different interaction potentials, but they generally require
a large computational effort, and it is not always easy to
understand which detail of the model is important to deter-
mine certain properties. On the contrary, simplified models
generally need easier numerical calculations and allow quite
easily to trace connections between microscopic interactions
and macroscopic properties[13–24]. A simplified mechanism
which has been proposed to describe the relevant physics of
hydrogen bonding is the following one(see for instance, Ref.
[5,25]). Hydrogen bond formation requires that the two in-
volved molecules are in certain relative orientations and stay
(on average) at a distance which is larger than the optimal
distance for van der Waals interaction. In other words, there
exists a competition between van der Waals interaction(al-
lowing higher densityand higher orientational entropy, but
resulting in aweaker bonding) and hydrogen bonding(re-
quiring lower densityand lower orientational entropy, but
resulting in astronger bonding). This simple mechanism has
been implemented in different models, both on-lattice
[22,23,26,27] and off-lattice[24], in three[22,23] as well as
two dimensions [24,26,27]. One of them is the two-

dimensional Mercedes Benz model, originally proposed by
Ben-Naim [14], in which model molecules possess three
bonding arms arranged as in the Mercedes Benz logo. In
recent papers by Dill and co-workers[24,28], a similar (off
lattice) model has been simulated at constant pressure by a
Monte Carlo method, allowing to describe in a qualitatively
correct way several anomalous properties of liquid water and
also of hydrophobic solvation. Nevertheless, in view of in-
vestigations on the behavior of water in contact with other
chemical species, as it happens for instance in several bio-
logical processes, it would be desirable to obtain an even
simpler representation of the physics of hydrogen bonding.

In this paper we investigate a model of the Mercedes
Benz type on the triangular lattice, with a twofold purpose.
As mentioned above, we are first meant to explore the pos-
sibility of obtaining a simpler model with the same underly-
ing physical mechanism, and with qualitatively the same
macroscopic properties. Moreover, we are interested in ex-
tending the model analysis to the global phase diagram and
in particular to the supercooled regime, in which water
anomalies are thought to find an explanation. Such a detailed
analysis is just made easier by increased simplicity. Working
on a lattice, we have to resort to a trick to describe hydrogen
bond weakening, when the two participating molecules are
too close to each other. Such a trick is similar to the one
proposed by Roberts and Debenedetti for their three-
dimensional model[23,29]. The energy of any formed bond
is increased(weakened bond) of some fraction by the pres-
ence of a third molecule on a site close to the bond(i.e., on
the third site of the triangle). Due to the presence of only
three bonding arms, it is not possible to distinguish between
hydrogen bond donors and acceptors, but this seems to be of
minor importance to the physics of hydrogen bonding[24].
Let us notice that the model has the same bonding properties
as the early model proposed by Bell and Lavis[13], and the
same weakening criterion as the model recently investigated
by Patrykiejew and co-workers[26,27], but here nonbonding
orientations are added. Such a feature is essential to describe
directional selectivity of hydrogen bonds.
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The paper is organized as follows. In Sec. II we define the
model in detail and analyze its ground state. In Sec. III we
introduce the first-order approximation in a cluster-
variational formulation, which we employ for the analysis.
Sec. IV describes the results and Sec. V is devoted to some
concluding remarks.

II. MODEL FORMULATION AND GROUND STATE

The model is defined on a two-dimensional triangular lat-
tice. A lattice site can be empty or occupied by a molecule
with three equivalent bonding arms separated by 2p /3
angles. Two nearest-neighbor molecules interact with an at-
tractive energy −e se.0d representing van der Waals forces.
Moreover, if two arms are pointing to each other, an orien-
tational term −h sh.0d is added to mimic the formation of
a hydrogen(H) bond. Due to the lattice symmetry, a particle
can form three bonds at most and there are only two bonding
orientations, when the arms are aligned with the lattice,
while we assume thatw nonbonding configurations exist(w
is another input parameter of the model). Finally, the H bond
energy is weakened by a termch /2 scP f0,1gd when a third
molecule is on a site near a formed bond. In the two-
dimensional triangular lattice there are two such weakening
sites per bond, so that a fully weakened H bond energy turns
out to be −s1−cdh. Let us notice that, in the above descrip-
tion, H bonding is a three-body interaction. The Hamiltonian
of the system can be written as a sum over the triangles,

H =
1

2 o
kr,r8,r9l

Hirir8ir9
, s1d

where Hi jk is a contribution which will be referred to as
triangle Hamiltonian, andi r , i r8 , i r9 label site configurations
for the three verticesr ,r8 ,r9, respectively. Possible configu-
rations are empty sitesi =0d, site with a molecule in one of
the two bonding orientationssi =1,2d or in one of thew
nonbonding onessi =3d (see Table I). The triangle Hamil-
tonian reads

Hi jk = − esninj + njnk + nknid − hfhijs1 − cnkd + hjks1 − cnid

+ hkis1 − cnjdg, s2d

whereni is an occupation variable, defined asni =0 for i =0
(empty site) and ni =1 otherwise(occupied site), while hij
=1 if the pair configurationsi , jd forms a H bond, andhij

=0 otherwise. Let us notice that triangle vertices are set on
three triangular sublattices, sayA,B,C, and i , j ,k are as-

sumed to denote configurations of sites placed onA,B,C
sublattices, respectively. Assuming also thatA,B,C are or-
dered counterclockwise on up-pointing triangles(and then
clockwise on down-pointing triangles), we can definehij =1
if i =1 andj =2, andhij =0 otherwise. Let us notice that both
van der Waalss−eninjd and H bond energiess−hhijd, that are
two-body terms, are split between two triangles, whence the
1/2 prefactor in Eq.(1). On the contrary the three-body
weakening termsshhijcnk/2d are associated each one to a
given triangle, and the 1/2 factor is absorbed in the prefac-
tor. Let us denote the triangle configuration probability by
pijk, and assume that the probability distribution is equal for
every triangle(no distinction between up- or down-pointing
triangles). Taking into account that there are two triangles
per site, we can write the following expression for the inter-
nal energy per site of an infinite lattice:

u = o
i=0

3

o
j=0

3

o
k=0

3

wiwjwkpijkHi jk . s3d

The multiplicity for the triangle configurationsi , j ,kd is
given bywiwjwk, wherewi =w for i =3 (nonbonding configu-
ration) and wi =1 otherwise(bonding configuration or va-
cancy).

Let us now have a look at the ground-state properties of
the model. In order to do so, let us investigate the zero-
temperature grand-canonical free energyv°=u−mr (m being
the chemical potential andr the density, i.e., the average
site-occupation probability), which can be formally written
in the same way as the internal energyu of Eq. (3), by
replacing the triangle HamiltonianHi jk by

H̃i jk = Hi jk − m
ni + nj + nk

3
. s4d

We find an infinitely dilute “gas” phasesGd with zero density
and zero-free energy, and an ordered “open ice” phasesIod
with maximum number of H bonds per molecule. The latter
configuration is realized through the formation of an open
(honeycomb) H bond network with density 2/3 and free en-
ergy

vIo
° = − e − h − 2m/3. s5d

Another possibility is the “closed ice” phasesIcd, in which all
interstitial sites are occupied and all hydrogen bonds are
fully weakened. The resulting free energy is

vIc
° = − 3e − hs1 − cd − m. s6d

Let us notice that it is never possible to form three bonds in
a triangle, which means that we have frustration. It is easy to
show that theG phase is stablesvIo

° .0d for m,mG−Io
,

where

mG−Io
= − 3se + hd/2, s7d

the Io phase is stable (vIo
° ,0 and vIo

° ,vIc
° ) for

mG−Io
,m,mIo−Ic

, where

TABLE I. Possible site configurations, with corresponding la-
bels (i) and multiplicities(wi).
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mIo−Ic
= − 6e + 3ch, s8d

and the Ic phase is stable(vIc
° ,0 and vIc

° ,vIo
° ) for

m.mIo−Ic
. The Io phase has actually a stability region, i.e.,

mG−Io
,mIo−Ic

, provided

h .
3

2c + 1
e, s9d

which, in the worst casesc=0d, readsh.3e. We shall al-
ways work in the latter regime, which is the most significant
one to describe real water properties. It is also possible to
show that, at the transition point between the open and
closed ice phasessm=mIo−Ic

d, any configuration built up of a
honeycomb H bond network with any number of occupied
interstitial sites has the same free energy. Hence we expect
that theIo− Ic transition does not exist at finite temperature,
and actually we shall observe a unique icesId phase, in
which the interstitial site-occupation probability gradually
increases upon increasing the chemical potential.

Let us finally notice that another possible phase is a ho-
mogeneous and isotropic one in which the lattice is fully
occupied and molecules can assume only bonding configu-
rationssi =1,2d. This “bonded liquid” phase, whose free en-
ergy coincides with that of theIc phase in Eq.(6), is ob-
served in thew=0 case, studied by Patrykiejew and others
[26,27]. In this scenario, nonbonding configurations are ab-
sent and the bonded liquid ground state has, forcÞ1, the
same degeneracy as the Ising triangular antiferromagnet[27].
Nevertheless, in this work we shall deal with the casew
@1, which is relevant to describe H bond directionality. In
this case the closed ice phase is entropically favored with
respect to the bonded liquid phase, which cannot appear at
finite temperature. In conclusion, because of the introduction
of nonbonding configurations, the ground-state degeneracy is
removed atT=0+, where only an infinitely dilute(gas) phase
and a symmetry-broken(ice) phase are present. Such a phase
behavior is closer to the one of water than the one obtained
for w=0.

III. FIRST-ORDER APPROXIMATION

We shall carry out the finite temperature analysis of the
model mainly by means of a generalized first-order approxi-
mation on a triangle cluster, which we introduce in the
framework of the cluster-variation method. The cluster-
variation method is an improved mean-field theory based on
an approximate expression for the entropy. In Kikuchi’s
original formulation[30], the entropy is obtained by an ap-
proximate counting of the number of microstates. In a mod-
ern formulation[31], the approximate entropy can be viewed
as a truncation of a cluster cumulant expansion. The trunca-
tion is justified by the expected rapid vanishing of the cumu-
lants upon increasing the cluster size, namely, when the clus-
ter size becomes larger than the correlation length of the
system (the method necessarily fails near critical points)
[32]. The approximation is completely defined by the maxi-
mum clusters left in the truncated expansion, usually denoted
as basic clusters. One obtains a free-energy functional in the

cluster probability distributions, to be minimized, according
to the variational principle of statistical mechanics.

For our model we choose up-pointing triangles as basic
clusters(an analogous treatment works for down-pointing
triangles). This approximation, which seems to be good in
particular for frustrated models[33,34], is easily shown to be
equivalent to a first-order approximation on a triangle cluster
[13]. Let us notice that the internal energy is treated exactly,
because the range of interactions does not exceed the basic
cluster size, unlike the ordinary mean-field approximation.
The grand-canonical free energy per sitev=u−mr−Ts (s
being the entropy per site) can be written as a functional in
the triangle probability distribution as

bv = o
i=0

3

o
j=0

3

o
k=0

3

wiwjwkpijkfbH̃i jk + ln pijk − 2
3 lnspi

Apj
Bpk

Cdg ,

s10d

where b;1/T (temperature is expressed in energy units,
whence entropy in natural units) andpi

X is the probability of
the i configuration for a site on theX sublattice sX
=A,B,Cd. The site probability can be obtained as a marginal
of the triangle configuration probabilitypijk, namely,

pi
A = o

j=0

3

o
k=0

3

wjwkpijk ,

pj
B = o

i=0

3

o
k=0

3

wiwkpijk ,

pk
C = o

i=0

3

o
j=0

3

wiwjpijk . s11d

The above expressions show that the only variational param-
eter inv is the triangle probability distribution, that is the 64
variableshpijkj.

The minimization ofv with respect to these variables,
with the normalization constraint

o
i=0

3

o
j=0

3

o
k=0

3

wiwjwkpijk = 1, s12d

can be performed by the Lagrange multiplier method, yield-
ing the equations

pijk = j−1e−bH̃i jkspi
Apj

Bpk
Cd2/3, s13d

wherej, related to the Lagrange multiplier, is obtained by
imposing the constraint, Eq.(12),

j = o
i=0

3

o
j=0

3

o
k=0

3

wiwjwke
−bH̃i jkspi

Apj
Bpk

Cd2/3. s14d

Eq. (13) is in a fixed-point form and can be solved numeri-
cally by simple iteration(natural iteration method[35]). In
our case the numerical procedure can be proved to lower the
free energy at each iteration[34,35], and therefore to con-
verge to local minima. The solution of Eq.(13) gives the
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equilibrium hpijkj values, from which one can compute the
thermal average of every observable. Inserting these values
into Eqs.(3) and (10) gives respectively the equilibrium in-
ternal energy and free energy. The latter can be also easily
expressed through the normalization constant as

bv = − ln j, s15d

whencej can be viewed as the approximate(single site)
grand-canonical partition function. It is also worth mention-
ing that Eq.(13) preserves homogeneity(pi

X=pi
Y; ∀i ,X,Y),

due to the invariance ofH̃i jk under cycle permutation of the
subscripts[see Eqs.(3) and(4)]. Let us finally notice that the
free-energy expression[Eq. (10)] can be also derived by con-
sidering the model on a triangular Husimi tree(triangle cac-
tus) [34] as a bulk free-energy density, that is, the free-
energy contribution far enough from the boundary, where an
invariance condition for the configuration probability of the
triangles is assumed to hold.

IV. RESULTS

A. Phase diagrams

In order to provide a first insight into the model, let us
report in Fig. 1 the phase diagram in the chemical potential-
temperature plane, forh /e=4, c=0.5, and w=50. Three
phases can be observed: An icesId phase, with broken sym-
metry among the three sublattices, a liquidsLd phase, and a
gassGd phase. The latter two phases preserve the sublattice
symmetry but the liquid phase has a higher density. The ice
phase has a lower density than the liquid phase, and its struc-
ture reminds that of ground-state ice, with interstitial sites
occupied by molecules in nonbonding configurations. We
can observe a triple point(TRP), in which the three phases
coexist, and a gas-liquid critical point(CP). All displayed
transition lines are of first order. The above phase diagram
shares several properties with the one of real water. Other
crystalline phases, such as a real close-packed ice, cannot be
reproduced by the model.

Let us now investigate the role of model parameters, by
analyzing phase diagrams obtained for different values. In
Fig. 2(a), h /e andc are left unchanged, while the number of
nonbonding configurationsw is varied within the interval
f20,100g. Upon increasingw, the liquid phase turns out to be
more stable with respect to the ice phase, and theI-L transi-
tion temperature decreases. On the contrary, for lowerw val-
ues, theI phase is increasingly stabilized and theI-L transi-
tion temperature increases. Forw=20 the whole L-G
coexistence and also the critical point disappears. Such a
behavior can be explained by the fact that theL phase is
characterized by a higher number of nonbonding molecules
than theI phase, in which bonding molecules tend to form an
ordered structure. Therefore highw values largely increase
the liquid phase entropy.

In Fig. 2(b), w and c are held fixed and the ratioh /e is
varied within the intervalf3,5g. Let us notice that we have
restricted the investigation to cases in which the orientational
(H bond) interaction is stronger than the nonorientational
one, which is the case for real water. It turns out that the ratio
h /e affects the stability of theI phase with respect to both
theG andL phases. In fact, higher values ofh means stron-
ger H bond, which favors theI phase, that is, the only exten-
sively H-bonded phase. On the contrary, theL andG phases
are dominated by nonoriented interactions with coupling
constantse, therefore both these two phases are unfavored by
high h /e values. Even in this case theL-G coexistence may
become metastable.

FIG. 1. TemperaturesT/ed vs chemical potentialsm /ed phase
diagram for w=50, h /e=4, c=0.5. G, L, and I denote the gas,
liquid, and solid(ice) phases, respectively. CP denotes the critical
point and TRP the triple point.

FIG. 2. The same phase diagram as in Fig. 1(dashed lines)
compared to different parameter choices:(a) w=20 (solid lines) and
w=100 (dash-dotted lines); (b) h /e=5 (solid lines) and h /e=3
(dash-dotted lines); (c) c=0.2 (solid lines) andc=0.8 (dash-dotted
lines).
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The ice phase at high pressures has maximum density and
number of weakening molecules per H bond. Raisingc, the
stability of this configuration is lowered with respect to the
liquid phase with few H bonds. This is shown in Fig. 2(c)
whereh /e andw are fixed and the weakening parameterc is
varied in its interval of definitionf0,1g. This trend is re-
versed for loww values(w=0 as well), because in the latter
case the liquid has the maximum number of fully weakened
bonds.

In the next part of this work we focus on a particular
choice of parameters(w=20, h /e=3, and c=0.8) which,
from the above analysis, turn out to correspond to a waterlike
phase diagram. Figure 3 shows the temperature-pressure
phase diagram, and Fig. 4 the temperature-density phase dia-
gram. Let us notice that pressureP is simply given byP
=−v (the volume per site is assumed to be equal to 1, i.e.,
pressure is expressed in energy units), due to the fact that the
free energy has been defined as a grand-canonical potential.

B. TMD locus and stability limits

One of the water anomalies that the present model is able
to reproduce is the temperature of maximum density(TMD)

along isobars for the liquid phase. Joining TMD at different
pressures defines the so-called TMD locus, which is a nega-
tively sloped line in theT-P phase diagram of real water. We
determine the TMD locus numerically, by adjusting the
chemical potential in order to fix the pressure and then im-
posing the(isobaric) thermal expansion coefficient vanishes.

The limit of stability of the liquid phase(spinodal) is the
locus in which the metastable liquid ceases to be a minimum
of the free energy, and becomes a saddle point. The stability
limit can be obtained by studying the eigenvalues of the
hessian matrix of the free energy[36]

]2sbvd
] pijk ] pi8 j8k8

= wiwjwkHdii8d j j 8dkk8

pijk
−

2

3
Fdii8wj8wk8

pi
A

+
wi8d j j 8wk8

pj
B +

wi8wj8dkk8

pk
C GJ . s16d

Let us notice that, when the liquid phase stability is lost
(some eigenvalue of the above matrix vanishes), also the
corresponding fixed point of the natural iteration equations

FIG. 3. PressuresP/ed vs temperaturesT/ed
phase diagram forw=20, h /e=3, and c=0.8.
Solid lines denote first-order transitions, a dashed
line denotes the TMD locus, and a dash-dotted
line denotes the stability limit for the liquid
phase. The inset displays, in addition, the locus of
divergence of the density response functions at
low temperature(solid line) with its “critical”
point and the Kauzmann line(dashed line).

FIG. 4. TemperaturesT/ed vs density srd
phase diagram forw=20, h /e=3, and c=0.8.
Solid lines denote phase boundaries; a thin
dashed line corresponds to the triple point. Phase
labels as in Fig. 1; double labels denote two-
phase coexistence regions.
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(13) becomes unstable. In order to determine the stability
limit with respect to the symmetry-broken ice phase, it is
sufficient to impose homogeneity during the iterative proce-
dure, which is done by replacing Eqs.(11) with

pi
A = pi

B = pi
C = o

j=0

3

o
k=0

3

wjwk
pijk + pkij + pjki

3
. s17d

This trick cannot be applied when the liquid stability is lost
with respect to a homogeneous phase, because the liquid
fixed point of equations(13) becomes definitely unstable,
due to divergence of the density response functions. In the
latter case the spinodal is determined by solving the eigen-
value problem for the hessian matrix rewritten by forcing the
homogeneity condition(17).

The results are shown in Fig. 3. The stability limit of the
liquid with respect to the gas phase starts from the critical
point and reaches a minimum in the negative pressure re-
gion. After this point the line becomes negatively sloped and
joins continuously the stability limit with respect to the or-
dered ice phase. The TMD locus intersects the limit of sta-
bility in its minimum in the T-P plane, according to the
predictions of Speedy and Debenedetti[37–43], based on
thermodynamic consistency arguments. In fact, the TMD lo-
cus causes the liquid limit of stability line to retrace, giving
rise to a tensile strength maximum and to a continuous
boundary. Let us recall that, while at the stability limit with
respect to the gas phase, the density response functions di-
verge, this is not the case at the stability limit with respect to
the ordered phase. Nevertheless, we can observe that the
density response functions tend to diverge also upon decreas-
ing temperature, as observed experimentally. The locus of
divergence, terminating at some kind of critical point, can be
defined, in the framework of a simplified variational free
energy forced to describe a homogeneous system, as an ad-
ditional stability limit with respect to a low-density liquid
phase. Such “phase” corresponds to a saddle point of the
original (not symmetrized) free energy, unstable with respect
to the solid phase. As the low-pressure solid phase reminds
the ground-state “open ice” structure, which is threefold de-
generate, the triangle probability distribution of the low-
density liquid phase turns out to be essentially an arithmetic
average over the three ice distributions. The unphysical na-
ture of this solution is also reflected in its negative entropy.
The divergence locus, together with the locus at which the
liquid phase entropy vanishes(Kauzmann line), are shown
for completeness in the inset of Fig. 3. Upon increasing tem-
perature the divergence locus meets the spinodal tangentially
and they become the same curve ending in the “true” gas-
liquid critical point.

C. Response functions

Let us now investigate the density response functions and
the specific heat of the liquid at constant pressureP/e=1
(pressure is kept fixed by numerically adjusting the chemical
potential m). It turns out that these functions display an
anomalous behavior similar to that of real liquid water. The
first response function we consider is the thermal-expansion

coefficient aP=s−]ln r /]TdP, which is proportional to the
entropy-specific volume cross-correlation. For a typical fluid,
aP is always positive because if in a region of the system the
specific volume is a little larger then the average, then the
local entropy is also larger, i.e., the two quantities are posi-
tively correlated. On the contrary, for our modelaP [Fig.
5(a)] displays an anomalous behavior. As temperature is low-
ered aP vanishes(at the TMD), becomes negative, and fi-
nally tends to diverge. As previously mentioned, divergence
can be observed only for pressure values less than some
“critical” pressure. Anyway, before divergence is actually
reached, the liquid loses stability with respect to the ice
phase.

The trend of the isothermal compressibilitykT
=s]ln r /]PdT is also anomalous[Fig. 5(c)]. For a typical
liquid, kT decreases as one lowers temperature, because it is
proportional to density fluctuations, which decrease upon de-
creasing temperature. On the contrary, in Fig. 5(c) we can
observe thatkT, once reached a minimum, begins to increase
upon decreasing temperature. Such a behavior is observed in
real liquid water. An analogous behavior characterizes the
constant pressure specific heatcP=s−T]2m /]T2dP [Fig. 5(b)].

D. Numerical simulation

We have studied the model in the first-order approxima-
tion to obtain easily detailed information about phase dia-
grams and in particular the metastable region. In order to
check this approximation and obtain an estimate of its quan-
titative accuracy, we have also performed some(grand ca-
nonical) Monte Carlo simulations on a 60360 triangular lat-

FIG. 5. Response functions at constant pressuresP/e=1d as a
function of temperaturesT/ed: (a) thermal-expansion coefficient
seaPd; (b) specific heatscPd; (c) isothermal compressibilitysekTd.
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tice with periodic boundary conditions. From the very
beginning, we have chosen quite a low number of nonbond-
ing configurations for our analysissw=20d, in order to in-
crease the speed of simulation dynamics. In fact a lowerw
value corresponds to a smaller configuration space. We re-
port some results in the following.

In Fig. 6 we show a first-order transition between the gas
and the liquid phases along a constant temperature path
T/e=1.05, quite less than the critical temperature. At the
critical point, the correlation length increases and the ap-
proximation may give worse predictions. Figure 6 suggests
that the first-order approximation well localizes the transition
and that far enough from the critical point its predictions are
nearly quantitative. Of course, Monte Carlo simulations dis-
play smooth density variations, due to finite size effects, but
the Binder cumulant(inset), displaying a minimum, gives
evidence of a first-order transition.

The reentrance of the liquid stability limit, which is one of
the striking features of the(metastable) phase diagram of this
model, is also confirmed by simulations. Performing simula-

tions in the metastable region, the spinodal has been deter-
mined by an arbitrary criterion for the lifetime of the meta-
stable phase(100 Monte Carlo steps), as it has been done in
previous studies[22]. Such a criterion allows us to find the
kinetically controlled limit of supercooling(homogeneous
nucleation locus), shown in Fig. 7, along with the corre-
sponding first-order approximation result. Both methods
show a reentrant spinodal forming a continuous boundary.
The simulations also confirm the distinction between liquid
limit of stability with respect to the gas or to the ice phase, as
in the first-order approximation.

V. DISCUSSION AND CONCLUSIONS

In this paper we have investigated a two-dimensional lat-
tice model in which model molecules possess three equiva-
lent bonding arms, and bonding energy depends on the pres-
ence of neighbor molecules, giving rise to a three-particle
interaction. The observed behavior is qualitatively similar to
that of water, exhibiting the correct anomalies. Upon super-

FIG. 6. Gas-liquid transition at fixed tempera-
ture sT/e=1.05d, upon varying the chemical po-
tential sm /ed: first order approximation results
(solid line) compared to Monte Carlo simulations
(scatters), for w=20, h /e=3, andc=0.8. The in-
set displays the Binder cumulant minimum, to-
gether with the transition point predicted by the
first-order approximation(vertical line).

FIG. 7. Stability limits from first-order ap-
proximation (thick lines) and homogeneous
nucleation points from Monte Carlo simulations
(scatters), for w=20, h /e=3, andc=0.8. Open
circles and a solid line denote the stability limit to
the ice phase, filled circles and a dashed line the
stability limit to the gas phase. Thin dash-dotted
lines denote equilibrium phase boundaries.
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cooling, kT and cP increase andaP becomes negative and
large in magnitude. Nevertheless, at ordinary pressures(less
than the critical pressure) the density anomalysaP=0d is
found in the metastable liquid region. We have also deter-
mined the spinodal limits to the liquid state, and pointed out
the relationship between these limits and the TMD locus.
The growth in the response functions upon decreasing tem-
perature can be interpreted on the basis of a reentrant spin-
odal scenario. The liquid-gas spinodal meets the TMD locus
at the reentrance point, as required by thermodynamic con-
sistency. Actually the reentrant spinodal conjecture is one of
the possible theoretical explanations of water anomalies, and
some experimental results are consistent with this explana-
tion [44]. Nevertheless, it is important to note that, for the
specific case of water, alternative interpretations of the sta-
bility problem exist, based on the second critical-point con-
jecture [4]. The latter, supported by molecular dynamics
simulations[12], seems to be more consistent with the exis-
tence, in the negative pressure region, of a monotonic liquid-
gas spinodal and a reentrant TMD locus. On the contrary, our
model displays a metastable liquid state which is bounded by
a spinodal both at positive as well as negative pressures,
forming a continuous boundary. The lower temperature part
of the boundary is the limit of stability with respect to the
ordered ice phase, while the higher temperature part is the
limit of stability with respect to the gas phase. While the
response functions diverge at the liquid-gas spinodal, at the
liquid-solid spinodal they do not, even if they tend to higher
values. Anyway, in our framework, it is also possible to in-
vestigate the behavior of the unstable liquid(a saddle point
of the variational free energy) and determine the locus of
divergence. The latter always turns out to lie at a temperature
less than the limit of stability, according to experiments[45].
It also turns out that the divergence locus terminates at some
kind of critical point, meaning that response functions should
not show divergentlike behavior for pressure values greater
than some critical pressure.

Let us notice that a previous lattice model on the three-
dimensional body-centered-cubic lattice had pointed out a
qualitatively similar behavior[22]. Nevertheless, in such a
model, orientational degrees of freedom of water are not
treated explicitly and two equivalent sublattices are artifi-
cially distinguished by the Hamiltonian. This is necessary to
favor an open structured phase. Moreover, the analytical
treatment is based on the determination of a temperature-
dependent two-particle interaction. On the contrary in our
model there exists an explicit, though simplified, modeling
of hydrogen bonding and no temperature-dependent interac-
tion is introduced. The open structured phase is favored in
principle by the triangular lattice structure.

We have mentioned in the Introduction that the present
model is actually an extension over an early model proposed
by Bell and Lavis[13] (corresponding to the case in which
w=0 andc=0) and over a recent model investigated by Pa-
trykiejew and co-workers[26,27] (corresponding tow=0).
The former model in the same approximation actually dis-
plays, forh /e.3, a density anomaly(without singularities),
but we have verified that the anomaly occurs in a negative
entropy region. The latter model shows an unrealistic phase
diagram, in which, for high enough pressure, the liquid phase
extends its stability region down to zero temperature. In the
present work we have shown that the addition of nonbonding
configurations to such a simple class of two-dimensional lat-
tice models allows us to reproduce a qualitatively correct
waterlike behavior. Moreover, this result has been obtained
in a computationally much simpler way than a conceptually
similar model with continuous degrees of freedom, that is the
Mercedes-Benz one. The latter model is highly appealing,
because of its ability to explain most phenomena related to
hydrophobicity [28]. Therefore, it would be interesting to
analyze also the properties of the present model for a solu-
tion of an inert(apolar) solute, whose peculiar properties are
thought to be strictly related to hydrogen bonding. This goes
beyond the scope of the present paper and will be the subject
of a forthcoming article.
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